INSTALLING & STARTING

IMAGER program is available:

- 1. As a LINUX standalone version, please follow instructions here https://imager.oasu.u-bordeaux.fr/repository-and-installation/
- 2. Using MacPorts for MacOsX:
 \$ sudo port install imager
 \$ sudo port -f activate imager

Just type \$ imager to start.
(commands in IMAGER are not case-sensitive)

RUNNING DEMOS

IMAGER>@gag demo:demo get an up-to-date list of demos

CREATING UV TABLES

NOEMA:

- Create a UV table with CLIC (see CLIC manual)
- Create a set of UV tables for all spectral windows and all sources from a set of .hpb files
 \$ clic ; CLIC> @ all-tables ; CLIC> EXIT
 \$ imager ; IMAGER> SIC FIND *.uvt
 IMAGER> READ UV 'dir%file[1]' ! For the first one...

ALMA:

 Create a list of UVFITS files from a Measurement Set and convert \$ casa ; CASA <2>: vis='MyMeasurementSet.ms' CASA <3>: casagildas("Do") ; CASA <4>: exit()

\$ imager
IMAGER> sic find *.uvfits
IMAGER> for string /in dir%file
IMAGER> @ fits_to_uvt 'string'
IMAGER> next

Or (both cases): automatic data organization using the PIPELINE command **IMAGER**> **PIPELINE ORGANIZE**

USING HELP

HELP APPLY	provides a desc	ription of the command APPLY , its arguments and
	options. Argum	nents within [] are optional, the language is coded
	as LANGUAGE	, command options as /OPTIONS
HELP UV MAP	Variables	displays the list of control variables for
		the command UV_MAP
HELP UV MAP	MAP_item	describes the MAP_item variable controlling the
		<pre>UV_MAP parameter(s) (e.g., MAP_CENTER)</pre>
Command ?	short help on t	he command and its current parameters
Command ??	displays its seco	ond level parameters (advanced users)
Command ???	displays all para	ameters of <i>command</i>

Lost? Try typing "How do I do something"

SINGLE FIELD IMAGING AND DECONVOLUTION

Typical basic command sequence:

READ UV myTable	read your UV table in an internal buffer
UV_STAT	get recommendations for imaging
UV_MAP	make an image with current weights
SHOW BEAM	display the dirty beam
VIEW DIRTY	display the dirty image
CLEAN	deconvolve with default clean parameters
VIEW CLEAN	display the deconvolution results
PRIMARY	primary beam correction to a Clean image
VIEW SKY	display the primary-beam corrected data
WRITE * myResult	save all buffers in myResult files

Useful parameters: MAP_FIELD, MAP_ROBUST, MAP_UVTAPER

GENERIC DATA INSPECTION AND HANDLING UV TABLES

display all the information of a Gildas Data File header in a human readable way
read the UV table present in the current UV buffer in a restricted range of channels
restricted range of channels
write the current UV buffer in a uv table
display the UV coverage
quick view of visibilities vs. frequencies
select UV data to be displayed/imaged/written
simple spectral smoothing, providing only channel
averaging by integer number of channels
provides a more flexible spectral smoothing and
resampling facility
perform time-averaging of the UV data set
apply specified PM to a UV table

DISPLAYING DATA

SHOW	per plane display (MOMENTS, PV, NOISE,)
VIEW	synthetic view of maps and cubes
INSPECT	display 3D cuts along all 3 axes
EXPLORE	interactive display
COMPARE	compare 2 maps or data cubes

CONTINUUM PROCESSING

UV_BASELINE	remove the continuum baseline
UV_FILTER	filter the spectral line range to leave only the channels
	with continuum emission
UV_MAP /CONT	compute a continuum image from all channels using
	multi-frequency synthesis
MAP_CONTINUUM	compute a continuum image from 3D Clean or dirty data
UV_MERGE /FILE	merge UV tables with a specified spectral index

IMAGE PREPARATION

UV_CHECK	inspect the UV data to figure out how many different synthesized
	beams are needed
UV_SHORT	add the short- (or zero-)spacing information provided by an
	additional single dish data
UV_STAT	evaluate the impact of robust weighting and tapering on the
	synthesized beam, and provide recommendations for the image
	and pixel sizes
UV_TRUNCATE	restrict the UV baseline length range
UV_MAP	compute the dirty image
UV_RESTORE	compute the Clean image from a Clean component list by removal
_	of the Clean components in the UV plane, and image the residuals

DECONVOLUTION

IMAGER offers the following deconvolution algorithms:

HOGBOM	iterative search for point-source clean components (CC)
CLARK	faster variant of HOGBOM with minor/major cycles
MX	Cotton-Schwab algorithm, variant of CLARK
SDI	variant of CLARK including search for extended structures
MRC	Multi-Resolution CLEAN on 2 intermediate maps
MULTI	Multi-Scale CLEAN algorithm for extended sources
SPECTRAL	CLEAN with multi-resolution in frequency

Useful parameters: METHOD, CLEAN STOP, MASK

MOSAIC IMAGING AND SHORT SPACINGS

Image and deconvolve like single-field data (except for self-calibration)READ SINGLE single_dish.tab optionally read short-spacing dataUV_SHORToptionally merge short spacings with UV data setSHOW SKYif UV data set is a mosaic, the results appear as a sky brightness distribution (i.e, corrected for primary beams)

SELF-CALIBRATION

SELFCAL CHECK	check if self-calibration is useful and feasible
SELFCAL PHASE	self-calibrate the phase
SELFCAL SUMMARY	presents a summary of the result
SELFCAL SHOW	phase correction between the last 2 iterations
SELFCAL APPLY	apply the self-calibration solution
SELFCAL AMPLI	optionally self-calibrate the amplitude
	(SELF_TIMES parameter should be adjusted first)]
WRITE CGAINS	save the gains table
READ CGAINS; READ	UV ; APPLY apply saved self-calibration results
	to a different UV table
Useful parameters: SEI	F_SNR, SELF_TIMES, SELF_FLAG

POLARIZATION

Complete polarization handling only for continuum data so far

- **STOKES** derive or extract a single-polarization state UV table from a multipolarization UV table/file. **IMAGER** can then process the individual Stokes parameters separately.
- MAP_POLAR compute the polarization fraction and polarization angle images from the (I, Q, U) Stokes images or display polarization vectors on a background image

Note: when importing data, full polarization information is preserved only if the /STOKES option is added to the @fits to uvt command.

SPECTRAL LINE IDENTIFICATION

- CATALOGdefine or list the current catalog(s) for spectral line identification
(GILDAS or LINEDB format)UV_PREVIEWget a quick look at spectral information, attempts line
identification and automatic continuum estimateVIEWdisplay the integrated area, the current channel, the integrated
- VIEW display the integrated area, the current channel, the integrated spectrum and the current spectrum

Useful parameter: **REDSHIFT**

UV PLANE ANALYSIS

SHOW UV	display UV data
UV_FIT	fit simple source models to the visibilities
SHOW UV_FIT	display the fit results, usually as a function of frequency
UV_SHIFT	change the phase centre
UV_DEPROJEC	T de-project the (U, V) coordinates given a specified
	phase centre, orientation and inclination
UV_CIRCLE a	nd UV_RADIAL azimuthal averaging of visibilities
UV_REWEIGHT	change the visibility weights
UV_RESIDUAL	compute the residuals by subtraction of the Clean components or
	the residuals of UV_FIT

PIPELINE

The pipeline contains all processing steps for high fidelity imaging (Self-calibration, continuum extraction, line identification, etc.)

PIPELINE ? check the Pipeline parameters. The control parameters are available in the **ALL**[®] global structure.

PIPELINEstart the imaging PipelinePIPELINE/MODEALL|CONTINUUM|SPLIT|SURVEY

Specify in which mode the pipeline will run:

- ALL: produce data cubes of line and continuum emission together, around lines identified from the CATALOG
- **CONTINUUM**: only produce continuum images
- **SPLIT** (default): similar to ALL, but produces separate line data cubes and continuum maps
- **SURVEY**: image the full bandwidth at user-controlled spectral resolution

PIPELINE /WIDGET launch the Pipeline interactive control panel. The Widget allows the user to launch a step-by-step imaging process:

- ORGANIZE moves the initial files in a sub-directory structure
- **FIND** identifies wide band UV tables suitable for self-calibration
- SELECT restricts the work to a defined subset of files
- CHECK verifies if self-calibration is needed and possible
- **SELF** computes the self-calibration solution for the selected data
- **SHOW** displays the phase and amplitude correction
- COLLECT merges all self-calibration solutions from several bands
- **APPLY** applies the **SELF** (and optionally **COLLECT**) solutions to all UV tables
- **TIME** averages the self-calibrated UV Tables before imaging
- **IMAGING** produces continuum and/or spectral line images from identified spectral windows
- SKY performs primary beam correction to deconvolved data

SIMULATOR

SIMULATE activates the array Simulator

MAPS & CUBES HANDLING

COMBINE	combine data cubes with auto resampling
MAP_CONVOLVE	spatial convolution
MAP_REPROJECT	spatial re-projection (coordinates system, rotation, interpolation)
MAP_INTEGRATE	integrate on spectral range
MAP_RESAMPLE	spectral resampling
MAP_SMOOTH	spectral smoothing
MOMENTS	compute cube moments
EXTRACT	extract sub-cubes
SPECTRUM	extract a spectrum from a cube

BOOKKEEPING

BUFFERS	list status of internal buffers
DISCARD	forget (destroy) a buffer
SPECIFY	add or change header information
UV_TRIM	remove flagged data from a UV data set
HARDCOPY	filename /DEV EPDF create a hardcopy of the current plot

ADVANCED TOOLS

- **UV_DETECT** apply a matched filter defined by the Clean image to the current UV data (for weak lines detection)
- **KEPLER** re-align spectra of a Keplerian rotating thin disk according to the projected rotation velocity at any point in the disk, and compute the combined integrated spectrum and brightness radial distribution (PV image)
- **FEATHER** Combine a data cube containing high-resolution data with one containing the short-spacing data (hybridization in the UV plane). See variable **FEATHER RADIUS**

UV MERGE /MODE STACK create a stacked UV table